On Multi-Stochastic Tensors and its Applications
نویسنده
چکیده
In this talk, we presented the Birkhoff-von Neumann type theorem for a multistochastic tensors. In particular, we give a necessary and sufficient condition such that a multi-stochastic tensor is a convex combination of finitely many permutation tensors. It is well-known that extreme points in the set of doubly-stochastic matrices are just permutation matrices. However, we find that extreme points in the set of multi-stochastic tensors are not just permutation tensors. Hence some necessary and sufficient conditions for a multi-stochastic tensor to be an extreme point are established. These conditions characterize the ”generators” of multi-stochastic tensors. An algorithm to search the convex combination of extreme points for an arbitrary given multi-stochastic tensor is developed. Based on our obtained results, some expression properties for 3rd-order and n-dimensional multi-stochastic tensors (n=3 and 4) are derived, and all the extreme points of the 3-dimensional and 4-dimensional triplystochastic tensors can be produced in a simple way, respectively. As an application, a new approach for the partially filled square problem under the framework of multistochastic tensors is also given. * joint work with Michael Ng, MQ Xiao, LB Cui and RH Ke.
منابع مشابه
Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications
In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...
متن کاملModel and Solution Approach for Multi objective-multi commodity Capacitated Arc Routing Problem with Fuzzy Demand
The capacitated arc routing problem (CARP) is one of the most important routing problems with many applications in real world situations. In some real applications such as urban waste collection and etc., decision makers have to consider more than one objective and investigate the problem under uncertain situations where required edges have demand for more than one type of commodity. So, in thi...
متن کاملMax-Plus algebra on tensors and its properties
In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.
متن کاملUsing Genetic Algorithm in Solving Stochastic Programming for Multi-Objective Portfolio Selection in Tehran Stock Exchange
Investor decision making has always been affected by two factors: risk and returns. Considering risk, the investor expects an acceptable return on the investment decision horizon. Accordingly, defining goals and constraints for each investor can have unique prioritization. This paper develops several approaches to multi criteria portfolio optimization. The maximization of stock returns, the pow...
متن کاملA multi-stage stochastic programming for condition-based maintenance with proportional hazards model
Condition-Based Maintenance (CBM) optimization using Proportional Hazards Model (PHM) is a kind of maintenance optimization problem in which inspections of a system relevant to its failure rate depending on the age and value of covariates are performed in time intervals. The general approach for constructing a CBM based on PHM for a system is to minimize a long run average cost per unit of time...
متن کامل